Unit 5 Notes

- I. Photosynthetic Structures and Pathways
 - A. Photosynthesis consists of two groups of reactions in two separate regions of the chloroplast.
 - 1. The light reactions occur on the thylakoid membranes water is consumed and energy rich molecules are produced.
 - 2. The Calvin cycle occurs in the stroma -- the energy rich molecules and CO₂. are consumed to make three carbon sugars.
 - 3. The overall equation for photosynthesis is:

$$3 \; CO_2 \; + \; 3 \; H_2O \; \xrightarrow[\text{chlorophyll}]{\text{light energy}} > \; C_3H_6O_3 \; + \; 3 \; O_2$$

- B. The light reactions generate supplies for the Calvin cycle.
 - 1. Light excites electrons in photosystem II (PSII), causing them to leave for the electron transport chain (e.t.c.).
 - 2. An enzyme near the reaction center of PSII splits water, supplying e^- for the e^- "hole", H^+ , and O_2 gas as a waste product (2 $H_2O \rightarrow 4 H^+ + 4 e^- + O_2$).
 - 3. As the excited e⁻ are passed down the e.t.c., much of their energy is used to actively transport H⁺ into the thylakoid interior.
 - 4. The e.t.c. passes the lower energy e⁻ to PSI where they get an energy boost from the light captured there.
 - 5. These excited e⁻ are used to reduce NADP⁺ into NADPH.
 - 6. The other energy rich molecule, ATP, is produced using unequal concentrations of H⁺.
 - a. The combination of H⁺ produced from splitting water, H⁺ transported by the e.t.c., and H⁺ removed by NADPH builds a H⁺ gradient pointing out of the thylakoid.
 - b. H⁺ diffuses out of the thylakoid membrane through ATP synthetase, providing energy for ATP synthesis.

- 7. In summary, the light energy captured by PSII and PSI is used to create products (ATP and NADPH) for the Calvin cycle and O_2 gas as a waste product.
- C. The Calvin cycle is a series of enzyme catalyzed steps (carried out in the stroma) that use the energy from ATP and NADPH to convert CO₂ into stable, easily transported sugars.
 - 1. 3 CO₂ enter through stomates and are attached (carbon fixation) to 3 5-carbon compound (RuBP) producing 3 unstable, 6-carbon compounds. This step is catalyzed by the enzyme RuBisCO.
 - 2. The 3 6-C compounds immediately split to form 6 3-C molecules of PGA.
 - 3. In two enzymatic steps, 6 ATP and 6 NADPH are used to produce 6 3-C molecules of PGAL.
 - 4. One of these PGAL (3-C) leaves the cycle to be used for maintenance and growth.
 - 5. The remaining 5 3-C molecules of PGAL are converted back into 3 5-C molecules of RuBP (3 ATP are used for this) to begin the cycle again.
- D. The 3-C PGAL molecules are used for various purposes.
 - 1. Simple sugars such as sucrose can be made for respiration or transport to other regions of the plant.
 - 2. Starches and lipids can be made for energy storage.
 - 3. With the addition of NH_3 , amino acids can be synthesized.
 - 4. With the addition of NH₃ and phosphates, nucleic acids can be synthesized.

II. Photosynthesis and the Environment

- A. Light intensity, temperature, O_2 , and the availability of water, CO_2 , and nutrients all affect the rate of photosynthesis.
 - 1. Increasing light intensity promotes photosynthesis up to the point of photoinhibition (OH^- and H_2O_2 created).
 - 2. The rate of photosyn. increases with temperature until protein shape, gas solubility, and stomate size are affected.

- 3. Increases in CO₂ conc. and water uptake increase the rate of photosyn. until other limiting factors are fully "taxed."
- 4. The factor(s) in shortest supply have the greatest effect on the rate of photosynthesis.
- B. Photorespiration slows photosynthesis in many plants (C_3) , but some have evolved ways around it.
 - 1. In the Calvin cycle, RuBisCO can bind O₂ instead of CO₂ (similar shape) causing the loss of a previously fixed CO₂.
 - 2. Two groups of plants (C_4 & CAM) have evolved ways to reduce photoresp. and aid survival in hot, dry climates.
 - a. C₄ plants (sugarcane, corn, crabgrass, etc.) fix CO₂ outside of the Calvin cycle, away from rubisco.
 - i. Mesophyll cells (exposed to gas pockets inside the leaf) use a different enzyme (PEP carboxylase) to fix CO₂. This step creates a 4-C acid.
 - ii. The 4-C acid delivers the CO₂ to RuBisCO in the bundle sheath cells surrounding leaf veins.
 - iii. The high conc. of CO₂ around RuBisCO inhibits photoresp., increasing photosyn. by up to 50%.
 - b. CAM plants (found in hot, arid regions) separate CO_2 fixation with time rather than location (seen in C_4).
 - i. Stomates are open at night (conserving water) allowing CO₂ to be fixed by organic acids.
 - ii. During the day, enzymes release the CO_2 from the acids, making it available for the Calvin cycle.
 - iii. This process is inefficient, causing slow growth.