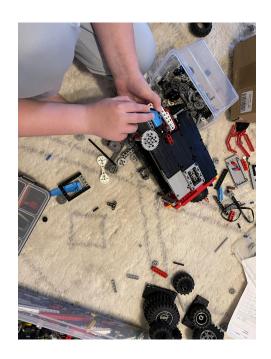
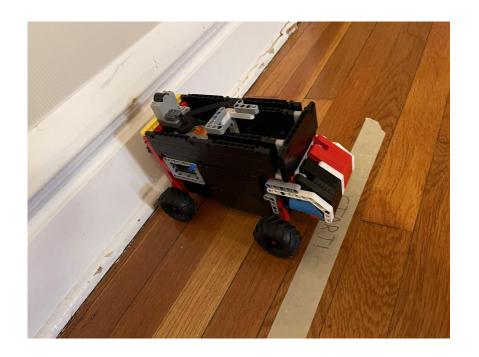
Weight vs. wheels

4th grade

VS

Testable Question:


How does the weight and size of the wheels affect a car's speed?


Prediction:

I think that the bigger wheels will make the car faster because the smaller wheels take more rotations to move the same distance. However I think the weight will make it have slower acceleration.

Procedure

1. I built the basic model

2. Heavy car = Basic + Battery Pack

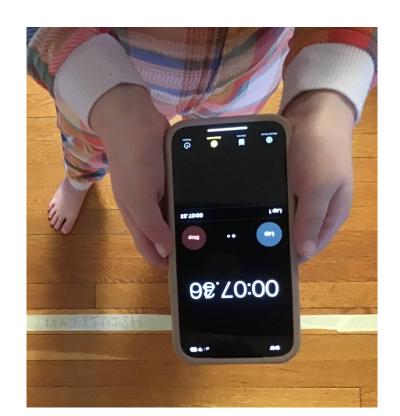
3. Big Wheels car = Basic + Bigger Wheels

4.I weighed the cars and recorded my data

5.I took the circumference of the wheels and recorded my data

6. I put my data on this chart

Note big wheels weight is only 924 because the wheels weigh more ...


Car type	Weight (grams)	Wheel circumference (cm)	
basic	800	18	
Heavy weight	1024	18	
Big wheels	924	26	

7. I made a start and finish line for my cars

8. I raced my car and recorded my data

Background

I chose this project because I really like building lego cars and then racing them and that's basically what my project is.

In my research I found out that:

- -Speed equals distance over time s=d/t
- -Wheel speed is measured in rpm's or revolutions per minute
- -Extra weight slows exceleration

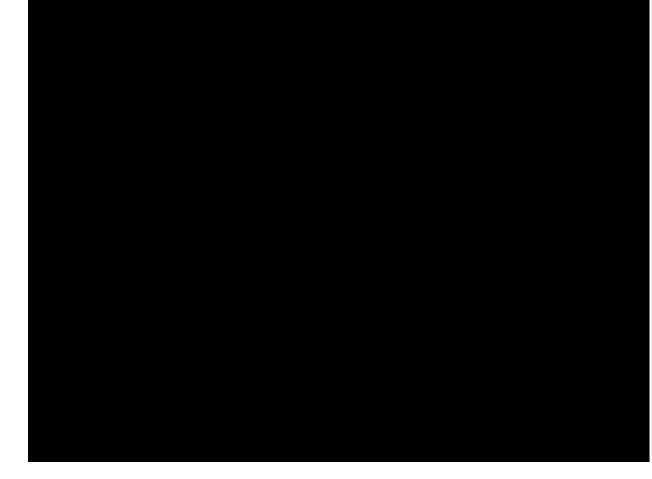
This project is important because it can help humanity convert to fuel efficient vehicles with bigger wheels therefore slowing down global warming.

Constant Conditions:

Independent Variable: the weight or the size of the wheels

Dependent Variable: the time it takes go 3 meters

Constant Conditions: the base and the weight or the size of the wheels


Basic model test 1/3

Heavy car trail 1/3

Big wheels car trial 1/3

		Speed of Cars (seconds)			
		Trial 1	Trial 2	Trial 3	Average
Type of Car	basic	7.58	7.26	7.50	7.45
	Heavy weight	7.68	7.96	7.81	7.82
	Big wheels	6.23	6.00	6.13	6.12

Conclusion and Reflection:

I found out that my hypothesis was right greater wheel size was faster and greater weight made it slower.

I was surprised that weight had such a negative affect i thought it would make up for it in momentum.

If I did this project again i'd use a longer race track so i could learn about momentum

Bibliography:

"Speed." Encyclopædia Britannica, Encyclopædia Britannica, inc., kids.britannica.com/. Accessed 22 Jan. 2024.

Name. "Weight Has No Effect on Your Car's Top Speed!: Know It All with Jason Cammisa: EP. 09." *Hagerty Media*, www.hagerty.com/media/videos/weight-has-no-effect-on-your-cars-top-speed-know-it-all-with-jason-cammisa-ep-09/#:~:text=Adding%20extra%20weight%20to%20your,rolling%20resistance%20and%20aerodynamic%20drag. Accessed 22 Jan. 2024.

Markings, Samuel. "How to Calculate Wheel Speed." *Sciencing*, 2 Mar. 2019, sciencing.com/calculate-wheel-speed-7448165.html.