Dear Parents,

Our class is beginning an earth science unit. We will be studying rock, one of the most important earth materials. Our investigations will center on the properties and uses of rock in many of its particle sizes-pebbles, gravel, sand, silt, and clay. The children will be working extensively with materials, observing, comparing, and communicating what they learn through their firsthand experiences with earth materials.

Your child may ask for help finding a rock or two to contribute to our class rock collection. A rock from your yard or neighborhood is fine. As our study continues, your child will be learning more and more about rocks. Try to find opportunities to talk with your child about sand, gravel, and soil, and ways people use these materials in construction (asphalt, concrete, bricks, mortar, etc.) and landscaping. This is an engaging theme for a family outing.

We're looking forward to lots of discoveries and new experiences as we explore the earth materials that can be found all around us. If you have any questions or comments, or have expertise you would like to share with the class, please write me a note.

Sincerely,
\qquad
MATH EXTENSION A

INVESTIGATION 1: FIRST ROCKS
Start with ten rocks. Sort them into three groups.

Write a number sentence about your rock groups.
\qquad
\qquad

MATH EXTENSION B

INVESTIGATION 1: FIRST ROCKS
Simon collected these rocks.

Write a story problem to go with Simon's rocks.
\qquad
\qquad
\qquad
\qquad
\qquad

INVESTIGATION 2: RIVER ROCKS

After separating their river rocks with screens, each group in Mr. Lee's class counted their large and small pebbles. This is what they		Large pebbles	Small pebbles
	Group 1	5	4
	Group 2	2	3
	Group 3	6	3
	Group 4	2	5
	Group 5	5	2

Make a graph of the number of rocks of each size.

\qquad

MATH EXTENSION B

INVESTIGATION 2: RIVER ROCKS
Your class started a rock store. Everything is made from rocks! Ian comes to buy some rocks. He has this much money in his pocket.

25

5¢

5¢

10¢

$1 c$

1¢

What can he buy?

clay-bead necklace	pet rock and crystal
polished pebbles 50¢ YES NO	

MATH EXTENSION A

INVESTIGATION 3: USING ROCKS

You and your friends want to make clay bricks at home.

1. Each person needs 2 cups of clay. How many cups of clay will you need?
2. Each person needs 1 handful of straw. How much straw will you need?
3. Every two people share 1 cup of water. How many cups of water will you need?

MATH EXTENSION B

INVESTIGATION 3: USING ROCKS
Ginny and Harry are building a wall with bricks. Each row will have six bricks when they are done. The wall is four rows tall.

1. How many bricks will they need to finish each row?

\qquad

2. How many bricks will they need all together to finish the wall?

Jay, Peter, Carol, Sally, and Mark are all in second grade. Their class went on a rock hunt.

1. If each of the boys found five rocks, how many rocks did the boys bring back to class?
2. If each girl found four rocks, how many rocks did the girls bring back?
3. If all of these students put their rocks in one big pile, how many rocks would there be?
4. If one boy then decided to take his rocks back out of the pile, how many would be left?

HOME/SCHOOL CONNECTION

INVESTIGATION 1: FIRST ROCKS
Invent a game that uses different kinds of rocks. It should use the properties of the rocks you have.

Here are some examples. The goal of the game could be to put together similar-looking rocks, like rummy. Or the goal could be finding one rock among many. Or the goal could be to find ways that rocks are the same, like the game of dominos or Crazy Eights. It could also be a brand new game that you invent. Have a family member help you write the directions for the game so you can share it in class.

Play the I Spy game. Gather 5-10 objects that share a property and place them on a table. A set might be composed of pencils, pens, flatware, straws, and chopsticks because they are all long and narrow. A se \dagger of books and catalogs might constitute a second set, a collection of stuffed toys a third, and so on.

Two players play the game. First the two players organize the objects from smallest to largest. Then one player secretly chooses one object and compares it to the others: "I spy something that is bigger than \qquad and smaller than \qquad ." The second player guesses which object was chosen by player one. If the guess is incorrect, player one provides a second "I spy" hint.

Swap roles and play again. Choose new sets of objects.

Rocks are used as building materials everywhere you look. We explored our school site for rocks in use. Where are rocks used in your neighborhood?

Go on a scientific field trip around your home. Let your child act as leader, pointing out where rocks can be found. Look for big rocks in walls and gardens, and tiny rocks, in the form of sand and gravel, in pavement, concrete, bricks, and lots of other places. List the rocks in use for your child to share with the rest of the class.

HOME/SCHOOL CONNECTION

INVESTIGATION 4: SOIL EXPLORATIONS
Our study of rock sizes led us to a study of soil. We now know that soil is mostly rock particles and some humus.

One important property of soil is its water content. Soil scientists often do tests to see how quickly water soaks into and passes through the soil. This is called porosity. Test and compare the porosity of soil in two or more places around your home.

Use a trowel or metal spoon to dig a shallow hole in the soil, maybe the size of a soda can, but not very deep. Pour in about a cup of water and time how long the water takes to completely soak into the soil. Compare flower beds, gardens, edges of lawns, paths, sandboxes, and so on. Keep track of the time needed to soak into different soils and collect a little sample of the soil.

Remember, in order to compare, the holes should be the same size, and the amount of water should always be the same.

