
B-1

Mini-Excursion 2

A Touch of Color
Graph Coloring

The map in the figure above is clearly a map of the 48 lower states of the Unit-
ed States, but it lacks a little charm. Maps are supposed to be visually pleasing,
and the typical way to make them so is to add a touch of color. The standard
approach to coloring a map is to use a single color for a state (we will use
“state” as a metaphor for the geographical units in the map, which in reality
could be countries, provinces, etc.), and never use the same color for two states
that share a common border. On the other hand, two states whose common
border is just one point (for example Arizona and Colorado) can be colored, if
we so choose, with the same color.
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B-2 Mini-Excursion 2: A Touch of Color
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The colorful map shown in Fig. 2-2(a) is a bit too colorful: 48 colors were
used, one for each state. First, it’s a little jarring to see that many colors—a clas-
sic case of too much of a good thing. Second, let’s imagine that there is a pro-
duction cost incurred each time we add another color to the map, so that a map
that uses say 48 colors is more expensive than a map that uses 47 colors, which in
turn is more expensive than a map that uses 46 colors, and so on. (In the old days
this was probably true, but with modern laser and inkjet printers the argument
doesn’t hold up. On the other hand, the cost argument gives us a convenient way
to think about the issues in map coloring, so we will pretend it’s still true.) A
more typical, “less expensive” colored map is shown in Fig. 2-2(b). Here a total
of five different colors are used. Is it possible to cut down the number of colors
used to four? How about three? You are encouraged to try answering these
questions before you read on. (For a convenient way to experiment, go to
http://www.sailor.lib.md.us/MD_topics/kid/col_applet/color.html. If you choose
“US Map” from the drop down menu that shows “Flag,” and then click on “Load
Image” you will get a blank map of the lower 48 states and a palette of colors for
coloring the map.)

See Exercise 16.

Much has been written about the mathematics of map coloring and its con-
nection with graph theory. In this mini-excursion we will explore some of the
ideas behind the fascinating topic of graph coloring and some of its more colorful
applications. Some familiarity with the basic terminology and concepts in
Chapters 5 and 6 is strongly recommended.

Graph Coloring and Chromatic Numbers

EXAMPLE 2.1 Can’t We All Get Along?

Sometimes people just don’t get along, and you are caught in the middle. Imagine
that you are a wedding planner organizing the rehearsal dinner before a big wed-
ding. There are a total of 16 people attending the rehearsal dinner: A, B, C, H
are relatives of the bride and groom; I, J, K, P are members of the weddingÁ

Á

(a)
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Graph Coloring and Chromatic Numbers B-3

This is, in fact, the unique solution to
the problem—see Exercise 12.

party. If things weren’t stressful enough, you are told that some of these people
have serious issues:

■ A doesn’t get along with F, G, or H,

■ B doesn’t get along with C, D, or H,

■ C doesn’t get along with B, D, E, G, or H,

■ D doesn’t get along with B, C, or E,

■ E doesn’t get along with C, D, F, or G,

■ F doesn’t get along with A, E, or G,

■ G doesn’t get along with A, C, E, or F,
■ H doesn’t get along with A, B, or C.

To make the rehearsal dinner go smoothly you are instructed to find a way to
seat these people so that people that don’t get along must be seated at different
tables. (I through P get along with everyone, so they are not a concern.) How are
you going to set up the seating arrangements with so many incompatibility issues
to worry about? What is the minimum number of tables you will need? You can
answer both of these questions using a little graph theory.

We will start by creating the “incompatibility” graph shown in Fig. 2-3(a). In
this graph the vertices represent the individuals, and two vertices are connected
by an edge if the corresponding individuals don’t get along (and therefore, should
not be seated at the same table). To make seating assignments we assign colors to
the vertices of the graph, with each color representing a table. Since we don’t want
two incompatible individuals seated at the same table, we don’t want to color two
vertices that are connected by an edge with the same color.We will refer to any col-
oring that satisfies this rule as a legal coloring of the graph.

Figure 2-3(b) shows a legal coloring of the vertices of the graph in Fig. 2-3(a)
that uses four different colors. This coloring tells us how to seat this obnoxious
group using four tables. Can we do better (i.e. use less than four tables)? Yes.
Figure 2-3(c) shows a legal coloring of the vertices of the graph that uses just
three colors.
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Could we possibly come up with a legal coloring of the vertices of the graph
that uses just two colors? No.The reason is clear if we look at A, F, and G (or any
other set of three vertices that form a triangle). Since each is adjacent to the other
two, A, F, and G will have to be colored with different colors.

The conclusion to our analysis is: (i) the minimum number of tables needed
to sit the wedding party is three, and (ii) the seating assignment should put A, B,
and E in one table (red), C and F in a second table (blue), and D, G, and H in the
third table (green). The remaining members of the wedding party can be arbi-
trarily assigned to fill up the remaining seats at the three tables.
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B-4 Mini-Excursion 2: A Touch of Color

Example 2.1 illustrates the two key ideas of this mini-excursion: (i) the idea
of coloring the vertices of a graph so that adjacent vertices don’t get the same
color, and (ii) the concept of trying to do this using as few colors as possible. Here
are the formal definitions of these concepts.

k-coloring

A k-coloring of a graph G is a coloring of the vertices of G using k colors
and satisfying the requirement that adjacent vertices are colored with dif-
ferent colors.

Chromatic Number

The chromatic number of a graph G is the smallest number k for which a k-
coloring of the vertices of G is possible. We will use the notation to
denote the chromatic number of G.

Using the above notation, for the graph G in Fig. 2-3(a) we have 
This follows from the observation that a 3-coloring of G is possible, as shown in
Fig. 2-3(c), but a 2-coloring of G is not.

EXAMPLE 2.2 Coloring Complete Graphs

The graph in Fig. 2-4(a) is the complete graph on 5 vertices. In this graph
every vertex is adjacent to every other vertex, so no two vertices can have the
same color. The only possible way to color is to use a different color for each
vertex, as in Fig. 2-4(b). Thus, we can conclude that x1K52 = 5.

K5

K5 ,

x1G2 = 3.

x1G2

Note that the actual choice of colors
used in coloring the graph is irrele-
vant. In fact, the colors are just a
convenient way to classify the ver-
tices, and we could just as well use
numbers or letters to do the same.
The use of colors is based primarily
on the fact that humans are better
able to perceive patterns of colors
than patterns of symbols.
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FIGURE 2-4

The argument used in Example 2.2 can be generalized to show that
This illustrates the fact that it is possible to create graphs with arbi-

trarily large chromatic numbers. You need a graph G with No
problem—choose G to be 

EXAMPLE 2.3 Coloring Circuits

A graph consisting of a single circuit with n vertices is denoted by The graph
shown in Fig. 2-5(a) is Figure 2-5(b) shows a 2-coloring of Since a 1-color-
ing is clearly out of the question, we can conclude that x1C62 = 2.

C6 .C6 .
Cn .

K100 .
x1G2 = 100?

x1Kn2 = n.
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The Greedy Algorithm for Graph Coloring B-5

See Exercise 9.
We can generalize the preceding observations to any If n is even,

if n is odd, Thus, we now know that it is possible to have
graphs with a large number of vertices and small chromatic number (2 or 3).
Graphs with a large number of vertices and chromatic number 1 are also possi-
ble, but are extremely uninteresting—they have no edges.

The Greedy Algorithm for Graph
Coloring
Like some of the other graph problems discussed in Chapters 5 through 8 (Euler
circuit problems, traveling salesman problems, shortest network problems, sched-
uling problems) graph coloring can be thought of as an optimization problem:
How can we color a graph using the fewest possible number of colors? We will
call such a coloring an optimal coloring of the graph, and the general problem of
finding optimal colorings is known as the coloring problem.

Optimal Coloring

An optimal coloring of a graph G is a coloring of the vertices of G using the
fewest possible number of colors.To put it in slightly more formal terminol-
ogy, an optimal coloring of G is a of G. [Too many G’s in the
last sentence, but all it says is that when we color a graph using colors
by definition we have an optimal coloring of the graph.]

x1G2
x1G2-coloring

x1Cn2 = 3.x1Cn2 = 2;
Cn1n Ú 32:

(a) (b)
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The graph shown in Fig. 2-6(a) is Figure 2-6(b) shows a 3-coloring of A
little reflection should be enough to convince ourselves that we will not be able to
color with just two colors, as we did with The problem is that we can alternate
two colors around the circuit until we get to the last vertex, but since the number of
vertices is odd, the last vertex will be adjacent to two vertices of different colors, and
a third color will be needed. It follows that x1C52 = 3.

C6 .C5

C5 .C5 .

See Exercise 8.

TANNEMEXC_B1-B14-hr  7/10/06  7:43 AM  Page B-5



B-6 Mini-Excursion 2: A Touch of Color

The truly interesting question in graph coloring is the following: Given an ar-
bitrary graph G, how do we find an optimal coloring of G? If you are a veteran of
Chapters 5 through 8, you may not be entirely surprised to find out that no effi-
cient general algorithm is known for finding optimal colorings of graphs. For small
graphs we can use trial and error, and for some families of graphs optimal color-
ing is reasonably easy (for example complete graphs, circuits, etc.) but those are
just special cases. In general, the best we can do is to use approximate algorithms
that hopefully get us close to an optimal coloring.

In this section we will discuss a classic approximate algorithm for graph col-
oring known as the greedy algorithm (for reasons that will become clear soon).To
illustrate the ideas behind the greedy algorithm we will start with a couple of sim-
ple examples.

EXAMPLE 2.4 Greed Is Good (Sometimes)

Let’s try to color the graph in Fig. 2-7(a). The strategy we will use is simple. We
will start with vertex A and color it with some color, say blue. We will think of
blue as the first color in some arbitrary priority list of colors (blue goes first, red
second, green third, yellow fourth, and so on.) We now move to the next vertex, B
and try to color it with the first color in our list (blue), but we can’t do it because
B is adjacent to A, which is already blue. OK, fine—we’ll just go to the next avail-
able color on the list (red) and use it for B. If we go next to vertex C how should
we color it? Other than red (C is adjacent to B) we can use any color we want, but
why introduce a third color when we can use blue? We are, after all, trying to cut
down on the number of colors used. So we color C with blue. Using the same phi-
losophy (try the colors in the designated order) we color D with red, and so on.
Everything lines up just right and we can alternate blue and red and get the 
2-coloring shown in Fig. 2-7(b). Since we know that the graph cannot be colored
with one color, Fig. 2-7(b) gives an optimal 2-coloring of the graph.

(a)

A B

I J C D

H G F E

(b)

A B

I J C D

H G F E

FIGURE 2-7

The strategy we used in Example 2.4 has two key components: (i) we color the
vertices of the graph following some designated order (in Example 2.4 we went
through the vertices in alphabetical sequence, but it can be done in any order we
choose) and (ii) we have a priority list for assigning the colors, and we limit the
colors used by always starting at the top of the list and using previously used col-
ors as much as possible. For obvious reasons, we call this a greedy strategy.

In Example 2.4 the greedy strategy gave us an optimal coloring, but there
was a bit of good karma involved. By pure luck, the order in which we colored
the vertices just worked out perfectly. This is not always the case, and our next
example shows how bad luck in the order of the vertices can give us a bad color-
ing of the graph.
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The Greedy Algorithm for Graph Coloring B-7

See Exercise 21.

EXAMPLE 2.5 Greed Can Sometimes Be Bad

The graph in Fig. 2-8(a) is the same graph as the one in Fig. 2-7(a) except for the
way the vertices are labeled. If we try the same approach we used in Example
2.4 (color the vertices in alphabetical order and use the same priority order for
colors—blue first, red second, green third, yellow fourth) we will get a very dif-
ferent result. We start by coloring vertex A with blue. So far so good. Now B is
not adjacent to A, so we will also color it with blue. Ditto for C and D [Fig. 2-
8(b)]. So far we have used only one color, so we are doing well. When we get to
vertex E we have to go down to our second color because E is adjacent to D,
which has already been colored blue. Thus, E is colored red. Likewise, F is adja-
cent to a blue vertex, so we color it red. We are now looking at Fig. 2-8(c). Since
G is now adjacent to a blue and a red vertex, we have to pull out a third color
(green) for G [Fig. 2-8(d)]. Now you can clearly see our bad luck. The next ver-
tex (H) is adjacent to a blue, a red, and a green vertex so we need a fourth color
(yellow) to color it [Fig. 2-8(e)]. The last two vertices (I and J) are adjacent to
blue vertices only, so we will color them red. This gives us the final coloring of
the graph [Fig. 2-8(f)].

(a) (b) (c)

A F

E H G B
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(d) (e) (f)
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FIGURE 2-8

Examples 2.4 and 2.5 illustrate an important point: The order in which the
vertices of the graph are colored can make a big difference in the kind of color-
ing we get. There is always some way to order the vertices so that we get an op-
timal coloring, but there is no easy way to figure out what that order is.
Moreover, there are n! different ways to order the n vertices, so going through
the different orderings to find the best one is out of the question. (Take a quick
look at Table 6-4 in Chapter 6 if you need to jog your memory on how quickly
factorials grow.)

We will now formalize the ideas introduced in Examples 2.4 and 2.5 into
what is known as the greedy algorithm for graph coloring. To implement the al-
gorithm we assume that the vertices are ordered in some arbitrary order

and that represents a priority order for the colors.c1 , c2 , c3 , c4 , Áv1 , v2 , Á , vn ,
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B-8 Mini-Excursion 2: A Touch of Color

Greedy Algorithm for Graph Coloring
■ Step 1. Assign the first color to the first vertex 
■ Step 2. Vertex is assigned color if it is not adjacent to otherwise

it gets assigned color 
■ Steps Vertex is assigned the first possible color in the pri-

ority list of colors (i.e. the first color that has not been assigned to one of
the already colored neighbors of ).

In spite of its limitations, the greedy algorithm is a reasonable approach for
graph coloring, especially when we use some ingenuity in the way we order the
vertices. Since there are more restrictions in coloring vertices of higher degree
than there are in coloring vertices of lower degree, one obvious refinement of the
greedy algorithm is to order the vertices in decreasing order of degrees: color ver-
tices of highest degrees first (if there are ties choose among them at random),
color vertices of next highest degree next, and so on. If we were to apply this ap-
proach to the graph in Fig. 2-8 one possible ordering of the vertices would be: G,
H, C, I, A, B, D, E, F, J. If we were to color the vertices in this order using the
greedy algorithm we would get an optimal coloring of the graph in Fig. 2-8.

The greedy algorithm can also be used to produce upper bounds on the chro-
matic number of the graph.The best known of these upper bounds is given by the
following fact, known as Brook’s Theorem.

Brook’s Theorem

Let be the degrees of the vertices of the graph G listed
in decreasing order. Then 

Brook’s Theorem essentially says that the chromatic number of a graph can-
not be more than the largest degree in the graph plus one. To see why this is true,
think about the worst case scenario we can run into when we are coloring a ver-
tex using the greedy algorithm: the vertex is adjacent to many other vertices all of
which have been colored with different colors. Since the largest number of adja-
cent vertices a vertex can have is the worst thing that could happen is that the
first colors have been used and we would need one more to color our vertex
(Fig. 2-9).

It turns out that for connected graphs, the only two cases where we actually
have to use the maximum colors to color the graph are when the graph is
the complete graph (all vertices have degree the chromatic number is
n), or the circuit where n is odd (all vertices have degree 2, the chromatic num-
ber is 3). If we rule these two cases out, we no longer need the in Brook’s The-
orem. We will call this the strong version of Brook’s Theorem.

Brook’s Theorem (Strong Version)

Let be the degrees of the vertices of a connected graph
G listed in decreasing order. If G is not (n odd) or then x1G2 … d1 .Kn ,Cn

d1 Ú d2 Ú
Á

Ú dn

+1
Cn

n - 1,Kn

d1 + 1

d1

d1 ,

x1G2 … d1 + 1.
d1 Ú d2 Ú

Á
Ú dn

vi

vi3, 4, Á , n.

c2 .
v1 ;c1v2

1v12.1c12

See Exercise 20.

vi

At most d1 colors

…

FIGURE 2-9
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Graph Coloring and Sudoku B-9

Graph Coloring and Sudoku
The game of Sudoku has become, in the last few years, the rage among puzzle and
game enthusiasts looking for a more intellectual (and cheaper) challenge than
the one provided by an X-Box. Sudoku is addictive, and even ordinary people
that are not drawn to video games are hooked on it. These days practically every
major newspaper carries a daily Sudoku puzzle.

If you haven’t played Sudoku yet, the rules are quite simple: You start with a
grid of 81 squares called cells.The grid is also subdivided into nine sub-

grids called boxes. Some of the cells are already filled with the numbers 1 through 9.
These are called the givens.The challenge of the game is to complete the grid by fill-
ing the remaining cells with the numbers 1 through 9. The requirements are: (i)
every row and every column of the grid must have the numbers 1 through 9 appear
once; (ii) each of the nine boxes must have the numbers 1 through 9 appear once.

A typical Sudoku puzzle may have somewhere between 25 and 40 givens,
depending on the level of difficulty. Figure 2-10 is an example of a moderately
easy Sudoku puzzle. (Source: http://www.geometer.org/mathcircles). The labels 1
through 9 on the columns and a through i on the rows are not part of the puzzle,
but they provide a convenient way to refer to the cells. Just for fun, you may
want to try this one out before you read on. (Hint:Try to figure out what number
should go in cell Once you have that one figured, go to cell d3. That’s enough
help for now. The solution is shown after the References and Further Readings.)

The Sudoku Graph
To see the connection between Sudoku and graph coloring, we will first describe
the Sudoku graph, which for convenience we will refer to as S. The graph S has 81
vertices, with each vertex representing a cell.When two cells cannot have the same
number (either because they are in the same row, in the same column, or in the
same box) we put an edge connecting the corresponding vertices of the Sudoku
graph S. For example, since cells a3 and a7 are in the same row, there is an edge
joining their corresponding vertices; there is also an edge connecting a1 and b3
(they are in the same box), and so on. When everything is said and done, each ver-
tex of the Sudoku graph has degree 20, and the graph has a total of 810 edges. S is
too large to draw, but we can get a sense of the structure of S by looking at a partial
drawing such as the one in Fig. 2-11.The drawing shows all 81 vertices of S, but only
two (a1 and e5) have their full set of incident edges showing.

f2.

3 * 39 * 9

a1

FIGURE 2-11 A partial drawing of
the Sudoku graph

4 8

1 2 3 4 5 6 7 8 9

9 4 6 7
5 6 1 4

2 1 6 5
5 8 7 9 4 1

7 8 6 9
3 4 5 9

a
b
c
d
e
f
g
h 6 3 7 2

i 4 1

FIGURE 2-10

See Exercise 22.

TANNEMEXC_B1-B14-hr  7/10/06  7:43 AM  Page B-9



B-10 Mini-Excursion 2: A Touch of Color

A short biographical profile of Hamil-
ton is given in Chapter 6.

The second step in converting a Sudoku puzzle into a graph coloring prob-
lem is to assign colors to the numbers 1 through 9. This assignment is arbitrary,
and is not a priority ordering of the colors as in the greedy algorithm —it’s just a
simple correspondence between numbers and colors. Figure 2-12 shows one such
assignment.

FIGURE 2-13 A Sudoku puzzle as a
graph coloring problem

Vertex color:

Cell number: 1 2 3 4 5 6 7 8 9

FIGURE 2-12

Once we have the Sudoku graph and an assignment of colors to the numbers
1 through 9, any Sudoku puzzle can be described by a Sudoku graph where some
of the vertices are already colored (the ones corresponding to the givens). For ex-
ample, the Sudoku puzzle shown in Fig. 2-10 is equivalent to the partial coloring
shown in Fig. 2-13. To solve the Sudoku puzzle all we have to do is color the rest
of the vertices using the nine colors in Fig. 2-12.

Map Coloring
Map drawing and coloring is an ancient art, but the connection between map col-
oring and mathematics originated in 1852 when a University of London student
by the name of Francis Guthrie mentioned to his mathematics professor (the well
known mathematician Augustus De Morgan) that he had been coloring many
maps of English counties (don’t ask why) and noticed that every map he had
tried, no matter how complicated, could be colored with four colors (where dis-
tricts with a common border had to be colored with different colors). He inquired
if this was a known mathematical fact, and De Morgan (who didn’t know the an-
swer) checked with some of the most famous mathematicians of the time, includ-
ing his friend William Rowan Hamilton.

Guthrie’s notion that any map could be colored with just four colors, sound-
ed so simple that everyone assumed it could be easily proved mathematically.
After 100 years and many failed attempts at a proof, the Four-Color Conjecture,
as the problem was famously known, was finally solved in 1976 by Kenneth
Appel and Wolfgang Haken of the University of Illinois.Yes, indeed, Guthrie was
right: Every map can be colored with four colors or less. The solution to this sim-
ple question took up 500 pages and about 1000 hours of computer time.
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Exercises B-11

Any map coloring problem can be converted into a graph coloring problem
by first finding the dual graph of the map. In the dual graph, each vertex repre-
sents a “state” (remember that this is a metaphor for the political units used in
the map), and two vertices are connected by an edge if the corresponding states
have a common border. If the common border happens to be just a point (as is
the case with Arizona and Colorado), then we do not connect the vertices. The
problem of coloring the map using the fewest number of colors now becomes
simply the problem of finding an optimal coloring of the vertices of the dual
graph. We can now take all the tools and techniques we learned for graph color-
ing and use them for map coloring.

Our final example is a very small example whose only purpose is to illustrate
the idea behind coloring a map by means of its dual graph.

EXAMPLE 2.6 Map Coloring with Dual Graphs

Figure 2-14(a) shows a small map with six states, and Fig. 12-14(b) shows its dual
graph. Figure 2-14(c) shows an optimal 3-coloring of the dual graph. We know
that the 3-coloring is optimal because the graph has triangles, and thus cannot be
colored with 2 colors. The corresponding optimal coloring of the map is shown in
Fig. 2-14(d).

For a slightly more meaningful map
coloring problem, see Exercise 15.

(a)

DD

C
C

F
F

A
A

B
B

E

E

D

CF

A B

E

(b) (c) (d)

D
C

F

A B

E

FIGURE 2-14

Exercises
A. Graph Colorings and Chromatic Numbers
For Exercises 1 through 6, you can experiment with coloring
the graphs using a Java applet available at: http://www.cut-the-
knot.org/Curriculum/Combinatorics/ColorGraph.shtml. The
applet was designed specifically to match these exercises.

1. For the graph G shown in the figure,

A

B

G D

F E L

C

H

K J

I

(a) find a 3-coloring of G.
(b) find a 2-coloring of G.
(c) find Explain your answer.

2. For the graph G shown in the figure,

(a) find a 4-coloring of G.

(b) find a 3-coloring of G.

(c) find Explain your answer.x1G2.

A B

E D

G
CF

x1G2.
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3. For the graph G shown in the figure,

(a) find a 5-coloring of G.

(b) find a 4-coloring of G.

(c) find Explain your answer.

4. For the graph G shown in the figure,

(a) find a 4-coloring of G.

(b) find Explain your answer.

5. For the graph G shown in the figure,

(a) find a 3-coloring of G.

(b) find Explain your answer.

6. For the graph G shown in the figure below,

(a) find a 4-coloring of G.

(b) find Explain your answer.x1G2.

A

B

CD

E

FG

K

H

I

J

x1G2.

A

B

CD

E F

G

H

I

J

x1G2.

A B

C

DE

F

G H I

K J

x1G2.

A B C

E

F G

D

7. Let denote the complete graph on n vertices.

(a) Explain why (see Example 2.2).

(b) Let G be a graph obtained by removing just one
edge from Find Explain your answer.

8. Explain why if then G consists of just isolat-
ed vertices.

9. Let denote the circuit with n vertices (see Example
2.3).

(a) When n is even, Describe a 2-coloring
of 

(b) When n is odd, Describe a 3-coloring of
Explain why a 2-coloring is impossible.

10. Let denote the “wheel” with n vertices, as shown in
the figure. Find Explain your answer.

(Hint: You should do Exercise 9 first.)

11. If G is a tree (i.e., a connected graph with no circuits),
find Explain your answer.

12. The graph shown below is the graph discussed in Exam-
ple 2.1. Explain why, except for a change of colors, the 3-
coloring shown in the figure below is the only possible
3-coloring of the graph.

B. Map Coloring

13. Give an example of a map with 10 states that can be col-
ored with just two colors.

14. Give an example of a map with 4 states that cannot be
colored using less than four colors.

15. Find a map of South America and then:

(a) Find the dual graph for the map.

(b) Use the greedy algorithm with the vertices ordered
by decreasing order of degree to color the dual
graph found in (a).

A B

C

D

EF

G

H

x1G2.

v1

v0

v2

v3

v4

v5

vn � 1

x1Wn2.
Wn

Cn .
x1Cn2 = 3.

Cn .
x1Cn2 = 2.

Cn

x1G2 = 1,

x1G2.Kn .

x1Kn2 = n

Kn
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(c) Find the chromatic number of the dual graph found
in (a). What does this imply about the coloring of
the original map of South America?

16. Color a map of the lower 48 states in the United
States using 4 colors. Explain why it is impossible to
color the map using less than four colors. (You might
find it convenient to do the coloring online at
http://www.sailor.lib.md.us/MD_topics/kid/col_applet/
color.html. If you choose “U.S. Map” from the drop-
down menu that shows “Flag,” and then click on
“Load Image” you will get a blank map of the lower
48 states and a palette of colors for coloring the map.)

C. Miscellaneous
17. A bipartite graph is a graph whose vertices can be sepa-

rated into two sets A and B such that every edge of the
graph joins a vertex in A to a vertex in B. A generic bi-
partite graph is illustrated in the figure.

(a) Explain why if G is a bipartite graph,

(b) Explain why if then G must be a bipar-
tite graph.

(c) If G is a bipartite graph, then every circuit in G
must have an even number of vertices. True or
False? Explain.

18. Suppose G is a graph with n vertices and no loops or
multiple edges such that every vertex has degree 3.
(These graphs are called 3-regular graphs.)

x1G2 = 2,

x1G2 = 2.

B

A …

…

(a) Explain why n must be even and 
(b) Explain why 
(c) Describe the 3-regular graphs for which 

(Hint: What types of 3-regular graphs can fail to
meet the conditions of the strong version of Brook’s
theorem?)

19. Suppose G is a connected graph with n vertices and no
loops or multiple edges such that vertices have
degree 3, and one vertex has degree 2.

(a) Explain why n must be odd and 

(b) Explain why 
(Hint: Use the strong version of Brook’s theorem
together with Exercises 8 and 17.)

20. This exercise refers to the graph in Fig. 2-8(a) (see Ex-
ample 2.5). Show that if the vertices of the graph are or-
dered in decreasing order, the greedy algorithm will
always give an optimal coloring of the graph.

21. Given a graph G with n vertices, there is a way to
order the vertices in the order so that
when the greedy algorithm is applied to the vertices in
that order, the resulting coloring of the graph uses

colors.

(Hint: Assume a coloring of the graph with colors
and work your way backwards to find an ordering of the
vertices that produces that particular coloring.)

22. Let S denote the Sudoku graph discussed in this mini-
excursion.

(a) Explain why every vertex of S has degree 20.

(b) Explain why S has 810 edges.

(Hint: See Euler’s Theorems in Chapter 5.)

23. If you haven’t done so yet, try the Sudoku puzzle given
in Fig. 2-10.

x1G2

x1G2

v1 , v2 , Á , vn

x1G2 = 3.

n Ú 5.

n - 1

x1G2 = 4.
x1G2 … 4.

n Ú 4.

Projects

Scheduling Committee Meetings of the U. S. Senate

This project is a surprising application of the graph coloring
techniques we developed in this mini-excursion, and in-
volves an important real-life problem: scheduling meetings
for the standing committees of the United States Senate.

The U.S. Senate has 16 different standing committees
that meet on a regular basis. The business of these commit-
tees represents a very important part of the Senate’s work,
since legislation typically originates in a standing committee
and only if it gets approved there moves on to the full Sen-
ate. Scheduling meetings of the 16 standing committees is
complicated because many of these committees have mem-
bers in common, and in such cases the committee meetings
cannot be scheduled at the same time. An easy solution

would be to schedule the meetings of the committees all at
different time slots that do not overlap, but this would eat up
the lion’s share of the Senate’s schedule, leaving little time
for the many other activities that the Senate has to take on.
The optimal solution would be to schedule committees that
do not have a member in common for the same time slot and
committees that do have a member in common for different
time slots. This is where graph coloring comes in.

Imagine a graph where the vertices of the graph repre-
sent the 16 committees, and two vertices are adjacent if the
corresponding committees have one or more members in
common. (For convenience, call this graph the Senate Com-
mittees graph.) If we think of the possible time slots as col-
ors, a k-coloring of the Senate Committees graph gives a way
to schedule the committee meetings using k different time
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4 8
9 4 6 7
5 6 1 4

2 1 6 5
5 8 7 9 4 1

7 8 6 9
3 4 5 9

6 3 7 2
4 1

Solution to Sudoku puzzle

slots. In this project you are to find a meetings schedule for
the 16 standing committees of the U.S. Senate using the
fewest possible number of time slots.

[Hints: (1) Find the membership lists for each of the 16
standing committees of the U.S. Senate. You can find the
necessary information at http://www.senate.gov/reference/ re-
sources/pdf/committeelist.pdf. For the most up to date infor-

mation, go to http://www.senate.gov and click on the Com-
mittees tab. (2) Create the Senate Committees graph. (You
can use a spreadsheet instead of drawing the graph—it is
quite a large graph—and get all your work done through the
spreadsheet.) (3) List the vertices of the graph in decreasing
order of degrees and use the greedy algorithm to color the
graph.]

B-14 Mini-Excursion 2: A Touch of Color
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