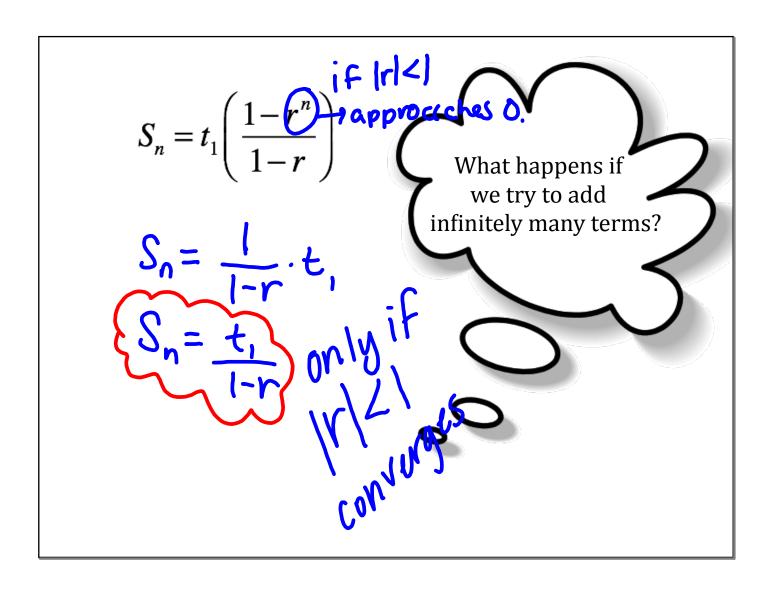
HAT Infinite Series

3/2/18

Warm Up:


• Given
$$\sum_{j=0}^{10} (\underline{j}^4 - \underline{j}) = 25,278$$
 find $\sum_{j=0}^{12} (\underline{j}^4 - \underline{j})$
25278 + $|\underline{j}^4| - |\underline{j}| + |\underline{j}^4| - |\underline{j}|$

• Write using summation notation: 60632

$$3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}$$

$$5_{6} = \frac{3(1-(1/3)^{6})}{1-1/3}$$

Ex#1: Estimate the sum
$$3+1+\frac{1}{3}+\frac{1}{9}+...$$
 4.5

Ex#2: Given the sequence 40, 20, 10,

• Find S_{10} $S_{10} = \frac{40(1-(1/2)^{10})}{1-1/2} \approx (79.9219)$

Sum of the first 10 terms

• Find $S_n = \frac{40}{1 - \frac{1}{2}} = 80$ Find the infinite sum, all the ten

Ex#3: Find the sum of each infinite geometric series (if it exists).

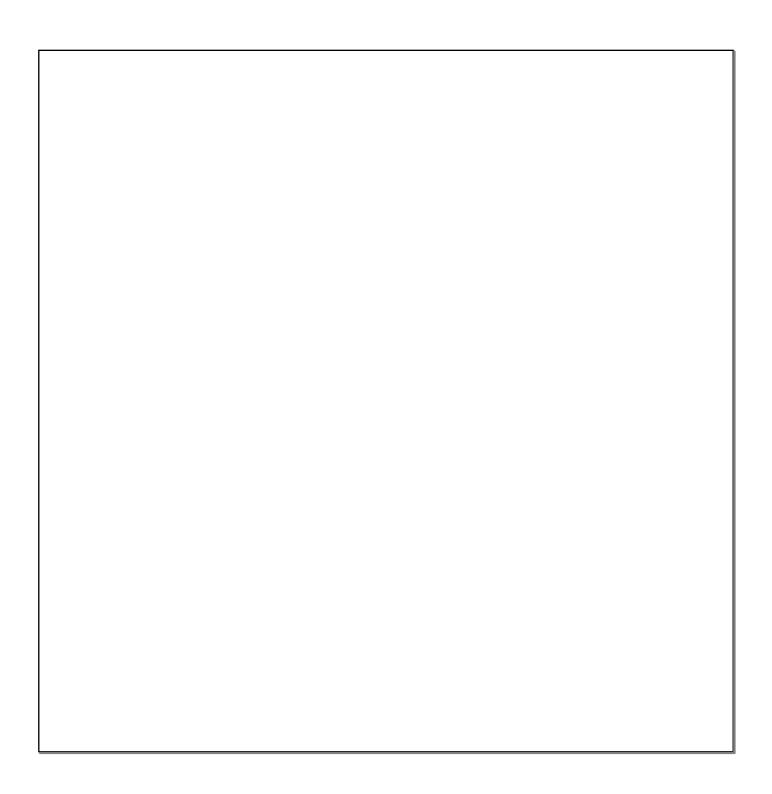
•
$$-\frac{4}{3}+4+-12+...$$
diverges $r=-3$ no infinite sum

•
$$3 - \frac{3}{2} + \frac{3}{4} - \frac{3}{8} + \dots$$
 $S_n = \frac{3}{1 - (-1/2)}$
Converges $r = -\frac{1}{2}$ $S_n = \frac{3}{3/2} = 2$

Ex#4: Write $\overline{27}$ as a fraction.

$$.27 + .0027 + .000027 + .0000027$$

$$r = \frac{1}{100}$$
 $\frac{27}{1000} + \frac{27}{1000000} + \frac{27}{10000000} + \dots$


$$S_n = \frac{24/100}{1-1/100}$$

$$S_n = \frac{27/100}{99/100}$$

$$S_n = \frac{3}{11}$$

page 686 #17, 19, 21, 25, 27, 31, 33, 41, 47, 49, 52, 62, 65

