HAT Applications of Continuous Growth/Decay and Logistic Growth 12/8/17

*9.
$$100 \text{ mg} - 1 \text{ mitial} \frac{1}{2} l_{4} = 4.47 \text{ billion years}$$

How many years before there are 10mg left
50 = 100 e^K(4.47) $y = ae^{-0.155046 \cdot t}$
 $\frac{1}{2} = e^{4.47 \cdot K}$ $10 = 100e^{-0.155046 \cdot t}$
 $\ln(\frac{1}{2}) = 4.47 \text{ K}$ $\frac{1}{10} = e^{-0.155046 \cdot t}$
 $\frac{\ln(\frac{1}{2})}{4.47} = \frac{4.47 \cdot K}{4.47}$ $\frac{4n(1_0)}{-0.155066} = -0.155066 \cdot t$
 $\frac{\ln(\frac{1}{2})}{-0.155066} = -0.155066 \cdot t$
 $\frac{1}{100} = \frac{1}{100} \frac{1}{100} + \frac{1}{100} = \frac{1}{100} \frac{1}{100} + \frac{$

8. Bone = 8000 yrs.old

$$\frac{1}{2}$$
 life of Carbon - 14 = 5730
 $y = a e^{Kt}$ $y = a e^{0.000121 \cdot t}$
 $\frac{1}{2} = 1 e^{K(5730)}$ $y = 1 e^{0.000121} (8000)$
 $\frac{1}{2} (\frac{1}{2}) = \frac{5730 K}{5730}$ $y = 0.3799$
 $y = 0.38$
-0.000121 = K
 $y = a(\frac{1}{2})^{\frac{1}{2}/5730}$ $y = 0.38^{\circ}$
 $y = 1(\frac{1}{2})^{\frac{1}{2}/5730}$ $y = 0.38^{\circ}$
 $y = 1(\frac{1}{2})^{\frac{1}{2}/5730}$ $y = 0.38^{\circ}$
 $y = 1(\frac{1}{2})^{\frac{1}{2}/5730}$ $y = 0.38^{\circ}$

