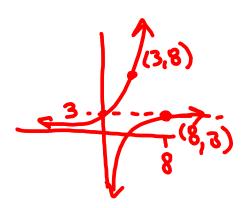

HAT The Inverse of the Exponential Function

11/17/17

Warm Up: • Graph $f(x) = 2^x$ and $y = f^{-1}(x)$

- State the domain/range of $f(x) = 2^x$ and $y = f^{-1}(x)$
- Find the equation of $y = f^{-1}(x)$
- Is $f(x) = 2^x$ a one-to-one function? $y = f^{-1}(x)$?



(reversibility)

Ex#1a:

Solve $2^x = 8$ Ex#1b: Solve $\log_2 x = 3$

 $\chi = 3$ (3,8)

Ex#1c) Solve $6^x = 216$ Ex#1d: Solve $\log_6 x = 3$

Ex#1d: Solve
$$\log_6 x = 3$$

$$6^{x} = 6^{3}$$

$$\chi = 216$$

$$log_6 216 = 3$$

 $log_6 6 = 3$

Ex#2: Show the composition of $f(x) = 2^x$ and $f^{-1}(x) = \log_2 x$. Form both $y = f(f^{-1}(x))$ and $y = f^{-1}(f(x))$.

$$f(f^{-1}(x)) = f^{-1}(f(x)) =$$

$$2^{\log_2 x} = \chi$$

$$\log_2 2^x = \chi$$

$$\chi = 2^y$$

$$\log_2 x = \log_2 2^y$$

$$\log_2 x = \log_2 2^y$$

$$\log_2 x = y$$

Ex#3: Sort these expressions into two categories... "equal to 8" and "NOT equal to 8".

Equal to 8
Equal to 8 $\log_2 2^8$
$5^{\log_5 8}$
$\log_5 5^8$
$2^{\log_2 8}$
$2^{\log_2 2^3}$

NOT Equal to 8
$$\log_{5} 5^{\log_{5} 3} = \log_{5} 3$$

$$\log_{2} 2^{\log_{2} 8} = \log_{2} 3$$

$$\log_{2} 2^{3} = 3$$

$$5^{\log_{5} 5^{3}} = 5^{3}$$

$$\log_{5} 3^{\log_{5} 8} = \log_{5} 8$$

Assignment: page 472 #25-35 odd, 37, 38 page 480 #9-15 odd